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Abstract
Firstly, this work investigates a new design of a conformal cooling channel for injection molding tools containing serial and
parallel circuits. Secondly, a hybrid-manufacturing process, combining machining and metal powder additive manufacturing,
was also evaluated to manufacture molds. Specimens were manufactured by selective laser melting (SLM) using stainless steel
(Corrax®) powder, which was deposited on a pre-machined PH13-8Mo stainless steel substrate. The melting zone interface
(MZI) between the two materials were assessed. The results showed that the laser-melted and machined surfaces were success-
fully melted and bonded. Thus, an injection mold was designed and manufactured. A pair of inserts containing the conformal
cooling channels were manufactured by the hybrid process and another equivalent pair of inserts containing a conventional
cooling system were produced only by machining. Injection molding was carried out alternating the two types of inserts. The
results showed that the mold with the conformal cooling channels reduced the warpage of the injected plastic parts by a factor of
~7. The difference in temperature along the insert was reduced by a factor of ~10 and the molding cycle time was around 36%
shorter compared with that of the conventional mold. Overall, the proposed hybrid manufacture of the inserts reduced the
manufacturing costs and time by 53% and 60%, respectively. The results indicate the benefits of using the proposed conformal
cooling design and the hybrid-manufacturing approach, which combines machining with additive manufacturing for injection
mold production.

Keywords Hybridmanufacturing . Additive manufacture . Selective laser melting . Conformal cooling . Injectionmolding

1 Introduction

Currently, injection molding is the process most used to man-
ufacture plastic components. The plastic molding cycle phases
are (a) injection (filling and compression), (b) packing, (c)
cooling, and (d) part extraction. During the molding cycle,
the molds are cooled by a cooling system consisting of inter-
nal channels, through which coolant fluid flows. The cooling
phase has a dramatic effect on productivity since it consumes
more than two-thirds of production time [1]. The efficiency of

the cooling system in the injection molding process influences
both the cycle time and plastic product quality. This step must
be as short as possible and able to achieve a homogeneous
heat exchange between the plastic part and the mold.
Currently, drilling is the conventional way to manufacture
the cooling channels and so only straight channels are possi-
ble. However, for plastic parts with complex freeform sur-
faces, straight channel cooling lines can cause non-uniform
heat exchange between the plastic and the mold. This de-
creases the product quality and mold productivity.

To overcome this issue, additive manufacturing by selective
laser melting (SLM) has been considered to produce molds con-
taining cooling channels that follow the mold cavity freeform
surfaces. This approach is known as conformal cooling.

Because of the high costs of SLM, most studies on confor-
mal cooling have been carried out with the use of numerical
simulations. The result obtained shows the benefits of the
conformal cooling either from the productivity point of view,
as reported by Zheng et al. [2], who reduced the cooling time
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by up to 72%, or by improving the quality of the plastic parts,
as described by Mohamed et al. [3], who reduced the shrink-
age by up to 17%.

However, few experimental scientific studies on molds
with the conformal cooling channels manufactured by SLM
can be found in the literature. Mazur et al. [4] conducted an
investigation of a real mold with the conformal cooling chan-
nels in a serial design manufactured by SLM, using H13 steel
to mold a plastic box. The results showed that a lower and
more homogeneous temperature of the conformal cooling in-
serts resulted in better plastic parts and reduced the
cycle time. This study was performed using a simple
plastic box with symmetric geometry (i.e., without geo-
metric complexity) as the workpiece.

Abbès et al. [5] investigated the molding process using a
mold with conformal cooling to produce parts of a real auto-
motive component with more complex geometry. However,
the design of the cooling channels is simpler, using linear
circuits without bifurcations, arranged in a serial design. The
authors applied the concept of hybrid molds by assembling
parts manufactured by SLM along with parts manufactured by
machining. Even though the SLM part was manufactured
using maraging steel, which has a lower thermal conductivity,
the mold with conformal cooling presented a reduction of
65% in the molding cycle time.

Park and Dang [6] performed an investigation using a mold
with conformal cooling for an automotive part with complex
geometry. The channels were designed in a spiral and also
arranged in a serial design without bifurcations. The authors
used P21 steel to manufacture the mold insert by SLM. In this
case, the molding cycle time was reduced by 23%.

Based on a review of the literature, it can be noted that
more than two decades of research have been carried out in
the field of conformal cooling and additive manufacturing for
injection molding. Most analyses involve simulation using
commercial software or alternative proposed methods.
Although some authors investigated the performance of the
conformal cooling system experimentally, most of them stud-
ied plastic parts with simple geometries, such as plates, boxes,
and shell bodies, and the inserts of the molds were manufac-
tures entirely by the SLM process. The hybrid-manufacturing
approach (machining and SLM) has not been investigated and
is not well understood.

The hybrid-manufacturing concept, combining machining
(regions with simple shapes) and SLM (regions with complex
shapes), could be a promising alternative to reduce SLM costs
and the time required to manufacture injection molds. The
results reported herein lend support to a new trend in relation
to machine conception, with both manufacturing techniques
(machining and SLM) applied in a single machine structure,
as described by Liu et al. [7].

Herein, a new design of conformal cooling, mixing serial
and parallel cooling circuits, using bifurcated channels, is

proposed and investigated. An injection mold was
manufactured applying the hybrid-manufacturing concept.
The efficiency of the proposed conformal cooling system is
compared to a conventional baffle cooling system when ap-
plied to inject a complex automotive part. The injection
process and the plastic parts are investigated as well as
the main mechanical properties of the metal parts
manufactured by the hybrid process.

2 Background

2.1 Design of molds with conformal cooling

The design of conformal cooling systems involves the defini-
tion of channel dimension, position, and the layout of the feed
systems (parallel or serial). Figure 1 shows the geometrical
parameters that need to be considered for a circular cross-
sectional channel.

Based on the parameters in Fig. 1, Table 1 shows the values
used by different authors to design cooling channels.

The parameters presented in Table 1 are some suggestion
guides for designing cooling channels. Depending on the
part’s geometry, it might be not convenient to follow these
parameters, because of either the dimension limits or the geo-
metric shape. Thus, some alterations can be necessary.

With regard to the design of conformal cooling systems,
Marques et al. [12] used commercial simulation software to
evaluate the design of either serial or parallel circuits. The
results showed that serial circuits had better heat exchange
and a more uniform coolant flow rate when compared to par-
allel circuits, which presented uneven turbulence and regions
with lower heat exchange. Wang, Yu, and Wang [13] showed
that serial conformal cooling was more efficient than parallel
circuits because of the higher flow rate. Marin, Miranda, and
Souza [8] investigated the combination of serial and parallel
circuits by numerical simulation where the parallel circuit was
applied in critical areas and serial circuits elsewhere, keeping
the coolant flow rate as constant as possible and improving the
heat exchange, without evaluations of cost and the
manufacturing process.

2.2 Thermal analysis of molds with conformal cooling

A general background about the heat transfer process and the
conditions that drive the injection molding is presented ahead.
It is convenient to understand the co-relations among the param-
eters to better understand the process and the design of a mold.

According to Xu et al. [14], Eq. (1) can be considered to
evaluate the heat transfer between the coolant, mold, and hot
plastic and to determine the balance of energy at the advancing
front of the polymer, considering an adiabatic boundary.

Int J Adv Manuf Technol



ΔE ¼ Ein−Eout þ Eg ð1Þ

where ΔE is the energy variation, Ein is the energy entering,
Eout is the energy exiting, and Eg is the energy generated in the
control volume. According to Park and Dang [6], when the
heat balance is established, the heat flux supplied from the
plastic part to the mold and the heat flux removed from the
mold by the coolant are in equilibrium. Thus, the heat balance
can be expressed by Eq. (2) as,

Qm þ Qc þ Qe ¼ 0 ð2Þ
where Qm is the heat flux related to the melted polymer, Qc is
the heat flux provided by the coolant, and Qe is the external
exchange with the surrounding environment. From the bal-
ance of energy, the thermal conditions at the advancing front
of the polymer can be analyzed using the equivalent thermal
circuit shown in Fig. 2. Thus, considering the thermal circuit
representation (Fig. 2), the influence of the distance from the
coolant channel to the mold surface (dimension l) is expressed
by Eq. (3),

q
0 0
cond ¼ −k

T2−T1ð Þ
l

ð3Þ

where q′′cond is the heat flux, k is the thermal constant, and T2
− T1 is the temperature difference between the mold functional
surface and the cooling channel.

Equation (3) shows that the heat exchange increases when l
decreases. However, it also implies a reduction in the mold

wall thickness, which would reduce the mold strength. The
transient evaluation can be performed based on the thermal
diffusivity in polymers. On analyzing heat losses from the
sample surfaces using the finite difference scheme, the ther-
mal diffusivity is governed by Eq. (4) [15],

∂T
∂t

� �
¼ a

∂2T
∂x2

� �
ð4Þ

where t is the time, a is the thermal diffusivity, x is the dis-
tance, and T is the temperature.

Correlating Eqs. (1), (2), (3), and (4) and Fig. 2, it is pos-
sible to note the behavior of the heat flux and the mold wall
temperature against the distance between the cooling channels
and the mold wall, so it can help designers to go forward with
the parameters presented in Table 1, taking into account the
limitations of the material`s properties of the mold (i.e., wall
thickness − parameter c on Table 1).

In the flow analysis of the bifurcated conformal cooling
channels arranged as parallel circuits, the effect of the flow
bifurcations must be taken into account even considering the
fluid as incompressible. Thus, the mass, momentum, and en-
ergy conservation are considered, as described by Eqs. (5),
(6), and (7), respectively [16, 17].

Mass
∂ρ
∂t

þ ∇:ρvð Þ ¼ 0 ð5Þ

Momentum ρ
∂v
∂t

¼ −∇:ρþ ∇:ηγ̇
h i

−ρ v:∇v½ � ð6Þ

a: distance between channels

b: diameter of the channel 

c: distance from channel center to mold 

functional surface (in contact with plastic part)

Fig. 1 Geometrical parameters
for conformal cooling

Table 1 Dimensions used by
some researchers to design
cooling channels [8]

Author Wall
thickness (mm)

Channel
diameter (mm) - b

Distance between
channels (mm) - a

Channel left to mold
surface (mm) - c

Dang and Park [9] 2 8–10 c = 0.7a + 1.6b
2–4 10–12

4–6 10–14

Mayer [10] 0–2 4–8 2b ≤ a ≤ 3b 1.5b ≤ a ≤ 2b
2–4 8–12

4–6 12–14

Park and Pham [11] - 6-12 2b ≤ a ≤5b b ≤ c ≤5b
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Energy ρ:Cp
∂T
∂t

þ v:∇T
� �

¼ βT
∂p
∂t

þ v:∇p
� �

þ ηγ̇2 þ ∇ k∇Tð Þ ð7Þ

Clemente and Panão [18] proposed a mathematical method
that considers the minimization of the flow resistance when
designing a conformal cooling circuit containing bifurcated
channels. Using Eqs. (5), (6), and (7), and the Lagrange mul-
tipliers method, the authors proposed an equation to minimize
the flow resistance for multiple circular cooling channels ac-
cording to the relation between the primary channel (D1) and
the bifurcated secondary channel (D2) described as:

D1

D2
¼ n

1=3 ð8Þ

where n is the number of bifurcated channels. Equation (9)
gives the maximum number of channels that maximizes the
heat transfer, respecting a minimum distance between the sec-
ondary channels (D2),

nmax ¼ floor
πL1tan αð Þ

D2

� �
ð9Þ

where floor[x] is set to the nearest integer value less than or
equal to x, L1 is the segment of the channel, and α is the angle
between the primary and bifurcated channels [18]. Increasing
the number of secondary channels increases internal

turbulence. The Reynolds number (Re) quantifies the flow
turbulence, that is, an increase in Re means that there is an
increase in the circuit efficiency [12]. The control of Re in
conventional straight drilled cooling channels is easier than
in circuits with several bifurcations, as is the case of parallel
circuits that require more volume of coolant [11]. The pro-
posed conformal cooling design developed in the current work
follows the Clemente and Panão [18] constraints.

2.3 Manufacture of molds with conformal cooling

Firstly, considering simple geometries of the plastic parts,
such as planar shapes, it is possible to manufacture the con-
formal cooling channels only by machining. The mold inserts

S
k
in

Metal PlasticCoolant

Fig. 2 Equivalent thermal circuit
analysis

(a) (b)

Indentations

SLMed 
Corrax®

Substrate 
PH13-8Mo

Fig. 3 Specimens manufactured applying the hybrid concept. a Prismatic
geometry used to analyze the hardness, density, and the melted zone. b
ASTM 370 specimen used for tensile tests
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must be divided into two sections, each one containing half of
the cooling channel path. These sections are then assembled
and sealed with O-rings [19]. This is a low-cost solution to
reach good heat exchange in the mold. However, this method
is extremely limited for most real applications.

Another concept involves the use of hybrid molds, where
the inserts of the molds are manufactured by different process-
es, as in the studies mentioned in Section 1, where some com-
ponents of the mold were manufactured by machining and
others by additive manufacturing [5, 6, 20, and].

In conventional SLM manufacturing, the part is built on a
substrate plate. After manufacturing, the part is removed from
the substrate by cutting.

Today, mold cavities can be manufactured by means
of SLM in high hardness materials with low porosity
and high mechanical properties [21]. In SLM, energy
density is an important factor, along with the laser pow-
er, scanning speed, layer thickness, powder quality, and
printing direction, all of which are related to the final
material porosity and mechanical properties [22]. The
effect of porosity and internal voids on the mechanical
properties is clear, but porosity also affects the thermal
properties of the mold [23]. The thermal heat transfer is

probably lower, due to the anisotropy nature of the ad-
ditive manufacturing process in comparison with mate-
rial produced by cold rolling or forging [24].

Laser-based processes produce a melted zone interface
(MZI) between the substrate/layer and deposited material,
which results in a heat-affected zone that can influence the
mechanical performance of the manufactured part. Since
high-temperature gradients are involved, residual stresses
and cracks can occur, which creates problems for the manu-
facture of high-quality parts [25]. At the beginning of the SLM
process, considering the substrate at room temperature, there
is a large temperature difference between the first layers of the
SLM and the substrate.

The study reported herein introduces a new concept
of hybrid manufacturing of the inserts. Initially, the re-
gion of the inserts with a simple geometry is
manufactured by machining. The complex regions of
the inserts (with the conformal cooling channels) are
then manufactured by SLM, using the machined part
as the substrate. Thus, the volume produced by SLM
can be reduced, as well as costs and manufacturing
time. However, two constraints must be considered: (i)
It is difficult to ensure efficient bonding in the powder
bed fusion with the substrate (which is a fraction of the
desired part in the proposed process). This creates an
interface zone with a high-temperature gradient (sub-
strate at room temperature and high temperature of first
layers of the SLM); and (ii) the characteristics of the
ordinary SLM process after building the first layers,
with a low gradient but with high temperature.

3 Experimental procedure

This study was focused on two objectives. Firstly, the hybrid-
manufacturing process, combining machining and metal pow-
der additive manufacturing, was explored with the
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Fig. 4 a Corrax® powder
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Table 2 SLM parameters for Corrax®

SLM process

Atmosphere Nitrogen

Laser power 400 W

Layer thickness 45 μm

Overlap 30%

Hatch 105 μm

Laser speed 1240 mm/s

Volumetric energy density 68.27 J/mm3
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manufacturing of inserts for injection molds. Secondly, a new
design of the conformal cooling channels for injection mold-
ing, containing serial, parallel, and bifurcated circuits, was
proposed and investigated.

Initially, the mechanical properties of specimens produced
by the hybrid-manufacturing process were evaluated. An in-
jection mold was then designed and manufactured. The de-
signed mold contains a pair of exchangeable inserts (for the
fixed and movable parts of the mold). Thus, one pair was
manufactured applying the new hybrid concept (with confor-
mal cooling) and another pair of inserts with the conventional
cooling system (baffle) was manufactured by conventional
machining. Evaluations were conducted through CAE simu-
lations and by the experimental plastic injection process, first
using the conformal cooling inserts and then using their coun-
terparts with the conventional cooling system. The plastic
parts and the molding process were analyzed.

3.1 Evaluating the mechanical properties of the
specimens manufactured by the hybrid process

Specimens with two different geometries (prismatic and cy-
lindrical) were manufactured by the hybrid process. In each
case, half of the specimen was manufactured by machining
and the other half by SLM. The quality of the MZI between
SLMed and machined parts was investigated.

An SLM Concept Laser® machine (model CL50WS)
with a YAG fiber laser (400 W), a spot size of 100 μm
and a laser wavelength of 1064–1070 nm, was used to
manufacture all of the SLM parts. Corrax® stainless
steel (C 0.03%, Cr 12%, and Ni 9.2%) powder was
used in the SLM process and fused onto a pre-
machined substrate. Because of commercial restrictions,
it was not possible to acquire solid blocks of Corrax®
stainless steel processed by conventional rolling.

(a) (b)

Machined

Interphase

SLMed

1 mm sheet
9 mm drill holesØ 2 mm

Ø 6 mm

Parallel 
concept

Serial concept

7
5

Bifurcated channels 

Transition 
geometry

Fig. 6 Sketches of the
exchangeable inserts. a Insert
with the new bifurcated
conformal cooling approach. b
Insert with a baffle

(a) (b)

6
4

Critical dimension 

Movable cavity 

Fixed cavity

Interchangeable 
insert

Cooling insert

Cooling insert

Temperature
measurement point 

Fig. 5 CAD designs for a
workpiece and critical dimension
d1 and b modular mold and
inserts
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Therefore, solid blocks of martensitic stainless steel
PH13-8Mo (13Cr-8Ni-2Mo-1Al-UNS S13800/WNr.
1.4534) produced by the cold rolling process were used
as the substrate.

The prismatic specimens (Fig. 3a) and a replica were
manufactured by the hybrid process. The porosity was
evaluated using metallographic images and the software
Multiphase Grains Graphite. The images were taken
within 50 μm from the border of the specimens (total
of 28 images randomly).

The distribution of the pores was evaluated using a Zeiss®
X-ray tomograph (METROTOM 1500) aided by the software
Volume Graphics GmbH 3.2. To ensure sufficient penetration
of the X-rays, the specimens were cut into four parts.

The hardness was analyzed along the cross section of the
specimens with a Wilson Instruments® testing machine
(402MVD) according to ISO 6507-1:2008. The hardness pro-
files of the SLMed and machined portions were

accessed, as well as the melted zone. This zone was
also investigated based on images obtained from a
Carl Zeiss® stereoscope (Discovery V8).

A cylindrical specimen and one replica were manufactured
applying the hybrid process for the tensile testing following
the standard ASTM 370 (Fig. 3b) using an Instron® universal
testing machine (model 5988).

The SLM parameters applied were recommended by the
SLM machine supplier and are shown in Table 2.

The geometry and diameter of the powder particles
used were evaluated by scanning electron microscopy
(SEM) on a Zeiss® SUPRA 55-VP microscope, with
×500 magnification. Figure 4 shows the particle shape
and the distribution of particle diameters. It can be ob-
served that the particle sizes ranged from 5 to 50 μm
(Fig. 4a), and the Gaussian curve (Fig. 4b) shows an
appropriate distribution for powder packing during the
SLM process.

(a) (b) (c)

SLM table

Machined 
substrates

Machined 
holes

SLM in 
process

SLM 
holes

SLMed

Fig. 8 Manufacture of hybrid
mold inserts. a Substrates on the
SLM table. b SLM process. c
Insert after SLM process

Fig. 7 Simulated a maximum displacement and b Von Mises Stress at the packing stage
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3.2 New approach for conformal cooling design

3.2.1 Design, simulation, and manufacturing of the inserts
of the mold

To achieve the objectives of this study, an automotive plastic
part was chosen as the workpiece (Fig. 5a). The plastic part
was designed with draft angles and ribs considering movable
and fixed cavities. It was intended to propitiate more interfer-
ence with the movable cavity of the mold during the solidifi-
cation of the part. Thus, when the mold was opened, the part
moved together to the movable cavity. After that, the extrac-
tors on the movable cavity removed the plastic part from the
cavity to finish the injection cycle.

The injection mold was designed with two exchangeable
inserts, one for each side of the mold cavity (one fixed and the
other moveable), as detailed in Fig. 5b.

One pair of inserts had a conventional cooling system (baf-
fle concept) and was manufactured by machining. The other
pair of inserts containing the conformal cooling channels was
manufactured by the hybrid-manufacturing approach (ma-
chining and SLM). The bottom portion of these inserts has
only straight-line holes, which were manufactured by machin-
ing (around 2/3 of the insert volume). The top portion of the
inserts containing the conformal cooling channels was

manufactured by SLM using the machined portion as the sub-
strate (where the conformal cooling was designed). The same
raw materials were used for the hybrid insert and the build
parameters are shown in Table 2.

The proposed design for the new conformal cooling system
includes a combination of serial and parallel cooling channels,
connected by a transition geometry to form a bifurcated circuit.
Based on the recommendations in Fig. 1 and Table 1 and
taking into account the geometrical constraints of the
plastic workpiece, the conformal cooling system was de-
signed using 12 cylindrical channels (6 coolant input and
6 coolant output, the serial component) with a diameter of
6 mm at the bottom of the inserts. Due to the restriction of
space at the inserts, each of these channels was split into 5
small channels with diameters of 2 mm (parallel compo-
nent) using a suave swept with a constant section, as seen
in Fig. 6a. The criteria of minimum flow resistance de-
tailed by Clemente and Panão [18] were considered.

Taking into account Table 1 and aided by CAE sim-
ulations, the dimensions a, b, and c were established as
2.1 mm, 2 mm, and 3 mm, respectively. These values
were established considering the following aspects:

i) The dimension a affects the heat transfer homogeneity
and it was defined to be the maximum value. But it is

Table 3 Parameters used in
simulation and real process Injection parameters

Material

Initial mold temperature

Polypropylene Braskem® grade H 105

25°C

Injection temperature 240°C

Cycle time 28 s

Open-close time 5 s

Filling time 0.4 s

Switchover 95% filling

Packing 50% injection pressure decreasing to 0 linearly in 2s

Coolant fluid Water

Coolant temperature 25°C (simulation)

Extractors 

position 
Conformal 

cooling inserts 

Baffle 
insert 

Fixed 
cavity  

Moveable  
cavity  

Baffle 
insert 

Fig. 9 Mold cavities and the
exchangeable inserts (baffle and
conformal cooling)
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limited by the plastic part geometry. And together with the
parameter c, both can affect the resistance of the insert.

ii) The dimension b was selected based on work presented
by Manzur et al. [4], which considers the maximum
diameter of cylindrical channels manufactured by SLM.

iii) The dimension c was selected to maintain a minimum
distance from the wall the ensure its mechanical
resistance.

The baffle inserts had three channels (diameter 9 mm and
length 31 mm) manufactured by drilling (Fig. 6b). One sheet of
metal with a thickness of 1 mmwas used in each baffle channel.

The baffle and conformal cooling inserts were de-
signed to have the same volume of coolant entering.
Both mold configurations were simulated using the
CAE software Sigmasoft® 5.1.

The mechanical resistance of the conformal cooling inserts
was evaluated. To determine the dimension c (resistance of the
inserts), simple estimation analyses were carried out by CAE
simulation. First, the injection pressure was obtained (about
32 MPa). Then, the mechanical resistance of the conformal
cooling inserts was estimated, considering c = 2 mm of wall
thickness, Corrax® (material of the inserts), and the geometry
of the channels. The results show the maximum displacement
of the inserts was 0.007 mm, estimated by the CAE (Von
Mises Stress was 314.8 MPa). It is 3 times lower than the
maximum resistance of the Uddeholm Corrax® (1100 MPa).
Therefore, the inserts were considered to be manufactured.
Figure 7 presents the simulations of these displacements and
mechanical stress in the packing phase.

Figure 8 details the manufacturing process of the hybrid
insert. During the execution of the experimental procedure,
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one important point noted is that the reference coordinate sys-
tem used for machining the bottom part of the insert and the
coordinate system used for the SLM machine to build the top
portion of the insert must be accurately aligned. Otherwise, in
the SLM process, the channels previously manufactured by
machining (Fig. 8a) may be obstructed.

After the SLM, the inserts were finished by milling to
achieve accurate surface and roughness according to the
end-use requirements. Figure 9 shows the mold cavities
manufactured, the interchangeable inserts (baffle assembled
and proposed conformal cooling), and also the positions of
the extractors of the mold (A-type extractors, two with 9
mm, two with 4 mm, and one with 5 mm of diameter).

3.2.2 Injection molding process and evaluations

Firstly, a batch of plastic parts was produced using conven-
tional inserts with baffle cooling channels. The inserts were
then changed to those with the conformal cooling system and
the second batch of plastic parts was produced. More than 50
parts were obtained in each batch. The temperature of the
mold was verified after each injection cycle using a digital
infrared thermometer (KKmoon® GM300), at 300 mm from
the top of the movable insert (the temperature measurement
point is shown in Fig. 5). A Haitian® MA 2500 injection
molding machine cooled with water at 26.1°C (± 2) flowing
at 9 l/min was used for the experiments.

The plastic injection molding parameters were obtained
from preliminary studies using the CAE software
Sigmasoft® 5.1 and are given in Table 3.

The quality of the polypropylene (PP) plastic parts was
evaluated by means of warpage and form error analysis. An
ATOS® (Core 300) scanner and the software ATOS®
Professional 2017 were used to compare the scanned and
CAD geometries. The critical dimension (d1) of the injected
parts was the focus of the evaluation (Fig. 5a).

4 Results and discussion

4.1Mechanical properties of specimensmanufactured
by the hybrid process

The density of the SLMed region was analyzed using a total of
28 optical images (ten of each specimen) and the software
Multiphase Grains Graphite. Figure 10 shows one example
of the results obtained.

The density of the specimens considering only the SLM
portion reached around 99.7% with a higher concentration of
pores with sizes < 10 μm (~60%). The highest percentage of
pores (around 60%) were < 10 μm and around 22%were > 20
μm. However, an important factor is the distribution of these
pores in the specimen.

Thus, X-ray tomography analysis was carried out and the
results in Fig. 11 confirm a low number of pores with most of
them being < 0.001 mm3. This reflects the behavior of both
constraints of the proposed hybrid manufacturing: (i) the
melted interface zone where the powder bed fuses with the
substrate, and (ii) the properties of the ordinary SLM process
after building the first layers.
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In hybrid manufacturing, the MZI is the region with the
highest temperature gradient and this can result in the formation
of cracks due to accumulated stress [25]. However, in the current
case, Fig. 11 shows that this temperature gradient did not inter-
fere with the quality of the MZI. The first layers of the SLM
(corresponding to the melted zone) and the vicinity presented a
lower number of pores and no cracks can be observed. This could
be because both materials used (powder and substrate) have high
weldability [26]. The high presence of aluminum as an alloying
element prevents the formation of intergranular austenite during
the solidification of the melt pool and subsequent formation of
martensitic structures that are responsible for the residual stresses.

On the other hand, it is possible to note in Fig. 11 that as the
distance from the MZI increases (beginning of the SLM pro-
cess), the pore size also increases slightly. After manufactur-
ing the first layers, the substrate together with the previously
melted layers has a significant gain in temperature and, con-
sequently, a reduction in the temperature gradient occurs. This
increases the temperature of the manufactured part, which can
result in material vaporization and entrapment in the melt pool
[27, 28], with the formation of pores in the middle/top portion
of the specimens (Fig. 11).

Figure 12 shows the stereoscope photo of the MZI between
the machined and SLMed materials.
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Figure 12 shows that the MZI had a thickness of 0.3 mm and
no defects could be detected visually. The analysis was carried
out to better understand some of themechanical properties of this
zone. Figure 13 shows the hardness (HV 0.5 ISO 6507-1:2008)
values for the MZI (at 0.0 mm), for the SLMed portion (from
−0.5 to −5 mm), and the machined portion (from 0.5 to 5 mm).
The average hardness was 346 HV ± 6 (~35 HRC), for values
obtained at 21 positions along with the specimens.

The hardness of the cold-rolled PH13-8Mo portion had
higher uniformity than the portion manufactured by SLM.
After the manufacture of the first layer by SLM, the hardness
increases slightly. This phenomenon is because of the rapid
solidification of the molten pool that results in the formation
of a coarse martensitic structure [28].

The hardness tends to reduce at around 4.5 mm from the
MZI on the SLM portion. This is probably due to an increase
in the temperature in this region, resulting in a heat-affected
zone that possibly underwent high-temperature tempering,
which can reduce the strength and the hardness. In addition,
this reduction in the hardness may be related to the presence of
a greater number of pores, as observed in Fig. 11.

To verify the resistance of the MZI between the SLM
portion and the machined substrate, tensile tests were
conducted on two ASTM 370 specimens (S1 and a rep-
lica S2). A ductile fracture with the formation of neck-
ing occurred on the SLM portion (Fig. 14).

The fracture did not occur at the melted zone interface as
expected, but around 5mm from theMZI on the SLM portion,
probably due to the higher concentration of pores in this re-
gion. This demonstrates that the MZI produced by hybrid
manufacturing is not a limitation. Also, it should be noted that
the ultimate tensile strength was around 1030 MPa and this
value is 7% lower than that of the ordinary rolled solution-
treated Corrax® (1100 MPa) [26].

Combining all of the results of this experimental phase, it is
possible to draw a close correlation:

– In the portion of the specimens built by SLM, at beyond
5 mm from the MZI, there were more pores present com-
pared with the first layers.

– The hardness of the SLMed portion decreased in this
region (around 5 mm after the melted zone).

– The fracture of ASTM 370 specimens occurred at around
5 mm from the melted zone.

Therefore, the results show that in the SLM process,
the properties of the specimens altered during their con-
struction. However, there was a relatively small reduction
in the ultimate tensile strength together with good me-
chanical properties in the melted zone. This demonstrates
that the proposed hybrid-manufacturing process can be
used successfully for many applications. These results
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motivated the continuation of this study and the
manufacturing of the injection mold was then carried out.

4.2 Proposed conformal cooling performance
evaluation

4.2.1 Simulation analysis

The simulations highlighted the variation in temperature along
with the inserts at the end of the cycles. With the same coolant
feed flow, the proposed conformal cooling inserts showed
better heat exchange efficiency than the conventional baffle
cooling, as seen in Fig. 15.

Besides the low values, the conformal cooling inserts
led to a high homogeneity in terms of temperature, with
a difference between colder and hotter areas of around
5°C. In the case of the baffle inserts, this difference was
10 times higher. This low homogeneity of the conven-
tional baffle inserts could increase the warpage and the
deformation of the molded plastic part.

4.2.2 Evaluation of injection molding process and plastic
parts

Figure 16 shows the temperature of the mold at the measure-
ment point (Fig. 5), taken with the digital infrared thermome-
ter after the injection cycles, for both cases investigated (baffle
and conformal cooling systems). For the mold with baffles,
the temperature increased more than 50% (42 to 63°C) from
the first cycles up to stabilization (steady-state regime), which
was reached after the 11th part produced. These first plastic
parts produced are wasted. However, for the mold with con-
formal cooling, the number of cycles required to reach the
steady-state regime is negligible, and the temperature
remained constant at around 40°C. This means that the parts
tend to have the same quality starting from the first cycles,
thus avoiding wastage. Equations (4) to (9) help to understand
why the transient regime is different and the homogeneity of
the mold differs from conformal cooling to baffle cooling
channels, even the cross section on the inlet fluid is the same.
Besides these, it correlated to the design parameters of the
channels with the efficiency of the bifurcated cooling systems.

Critical area - about 50°CFig. 19 Simulation to enhance
the process using the mold with
baffle inserts

(a) (b)

Fig. 18 Visual inspection to
identify defects in injected parts
produced with a baffle inserts and
b conformal cooling inserts
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Considering the molding process in the steady-state regime,
the temperature of the conformal cooling mold was around 40%
lower than that of the baffle cooling mold. It is important to
mention that the divergence between real and simulated temper-
atures at the measurement point was low (around 8%).

Besides the difference between the maximum temperatures
on the molds, which influences the molding cycle time, the
difference in the temperatures along the insert is also impor-
tant in relation to maintaining the accuracy of the plastic part.

Figure 17 shows the results for the form error of the plastic
parts produced using both molds, in the molding cycles 1, 3, 6,
and 15. The inspections were carried out considering dimension
d1 (Fig. 5), which is relevant for the plastic component investi-
gated, with a nominal dimension of 17.05mm. The parts molded
using conformal cooling inserts had a d1 dimension error lower
than 1%, whereas the error for the parts molded using the con-
ventional baffle system was around 7% and, depending on the
plastic component, this deviation may not be acceptable.

Considering the parts produced in the first cycles (1 to 3)
using the baffle inserts, it can be noted that even with a low
temperature in these cycles (Fig. 16), close to the conformal
cooling temperature, the d1 dimension errors were significant-
ly higher (Fig. 17a). This is probably because of a greater
variation in temperature for the baffle inserts, whereas the
variation was negligible for the conformal cooling inserts.
The variation in temperature and the d1 dimension increased
non-linearly until the steady-state regime is reached (Fig. 17a
and Fig. 16), for the baffle inserts. In this molding regime, the
results of the simulation show that the temperature variation in
the inserts with baffle reached 50°C, whereas in the conformal
cooling system, it was only 5°C. This shows that the confor-
mal cooling promotes an exceptionally small temperature var-
iation along with the inserts, thus reducing the deviations in
the part geometry.

Additionally, a visual inspection revealed shrinkage defects
and voids in the parts manufactured using the baffle inserts, as
seen in Fig. 18a. These defects were not observed in the parts
molded with the conformal cooling inserts (Fig. 18b).

The presence of voids was observed in all parts ob-
tained using the baffle inserts, even when the mold was
cooler in the initial cycles. This defect did not occur in
the parts manufactured using the mold with conformal
cooling. The combination of a higher cooling rate in the
conformal cooling channel along with the high crystal-
lization rate of the injected material (PP) could hinder
the formation of this type of defect.

Additional simulations showed that to obtain plastic parts
with a level of quality similar to that obtained with the con-
formal cooling system, the injection process using the baffle
mold would need to be 36% longer, reducing productivity.
Figure 19 shows the results of these simulations.

Figure 19 shows that on increasing the cooling time and the
total cycle time to 44 s, the homogeneity of the temperature along
with the insert increases, and the temperature difference drops to
approximately 10°C, which is considered acceptable by injection
mold companies [29], and may avoid problems such as warpage
and voids. Thus, obtaining injected parts using the baffle inserts
would require a longer cycle time compared to conformal
cooling inserts. In addition, it is important to note that, besides
the longer time required for the manufacturing of each plastic
part, all associated expenses, such as energy consumption, labor
costs, maintenance of the mold, and the injection molding ma-
chine, would also increase.

4.2.3 Simple evaluation of cost and time associated
with the hybrid-manufacturing process

To assess the potential for the industrial application of the
proposed hybrid-manufacturing process, a simple evaluation
of the cost and time involved in the manufacturing of the
inserts was carried out (Table 4).

If only SLM is used to manufacture the mold inserts, a
cycle time of 38 h would be required. However, using the
proposed hybrid-manufacturing approach, the reduction in
the SLMvolumewas around 67% for each insert and the cycle
time is reduced to 15 h.

In relation to practical use, the hybrid-manufacturing pro-
cedure could reduce the SLM time by around 60% and the
costs by around 53% (from an estimated 7500.00 USD to
3500.00 USD considering the current market).

5 Conclusions

This paper describes a hybrid-manufacturing process, com-
bining machining and SLM, to manufacture injection molds
and also a new design of the bifurcated conformal cooling
channels combining serial and parallel circuits. A real mold
was manufactured applying these concepts and a batch of
plastic workpieces was produced. The hybrid-manufacturing
process, the injection process, and the plastic parts produced
were evaluated and the main conclusions are as follows:

Table 4 Reduction in the SLM
volume using hybrid
manufacturing

Insert Total volume (mm3) SLM volume (mm3) Machined volume (mm3) SLM reduction (%)

Movable 141.1 45.8 95.3 67.5

Fixed 156.7 51.5 105.2 67.0
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– Themelted zone interface (MZI)—between the machined
and the SLMed portion—can be considered the first con-
strain of the hybrid-manufacturing process. In the case
investigated, the specimens manufactured by the hy-
brid process had an MZI of 0.3 mm (depth). No
defects were observed.

– Contrary to the expectation, the MZI did not lose its me-
chanical properties, even though a higher temperature
gradient occurs in this region (substrate much cooler than
initial SLM layers). The MZI and its vicinity presented a
lower number of pores and no cracks were observed.

– The tensile strength test showed that the MZI was not the
fragile zone of the hybrid specimens. The rupture oc-
curred in the middle of the SLMed portion, around
5 mm from the MZI, although the ultimate tensile
strength was ~7% lower than that of the ordinary rolled
material. Thus, the hybrid-manufacturing process
did not significantly reduce the resistance of the
hybrid specimens.

– Considering the SLM process as the second constraint of
the hybrid process, it was observed that as the distance
from the MZI increases, the number of pores increases
slightly. However, the density of the SLM portion of the
specimens was around 99.7%, which is expected in an
ordinary SLM process.

– There is a tendency for the hardness to reduce in this
region of the SLM portion (5 mm from the melting zone
interface), but the hardness reduced by only around 2%
(346 ± 6 HV0.5) and it was very similar to that of the
substrate.

– The hybrid-manufacturing process was found to be a suit-
able alternative to reduce manufacturing costs and time.
With the use of the mold manufactured in this study, this
process saved around 53% in terms of costs and reduced
the SLM manufacturing time by around 60%.

– The injection molding process reaches the steady-state
regime within the first few cycles with the proposed con-
formal cooling channels, which is not the case with the
baffle mold. This reduces the wastage of material.

– The temperature measured on the proposed conformal
cooling mold was ~60% lower than that of the mold with
baffle inserts, at the end of one molding cycle.
Simulations showed a high homogeneity of the tempera-
ture on the conformal cooling inserts. To obtain similar
homogeneity using the baffle insert, the injectionmolding
time needs to be extended by 36%.

– The mold with conformal cooling resulted in plastic parts
without internal defects. This is because the temperature
homogeneity increased by a factor of 10, reducing the
dimensional error by a factor of 7.

In general, the hybrid-manufacturing process is reliable,
and provides an attractive alternative, saving manufacturing

costs and time. The proposed bifurcated conformal cooling
design produces better plastic parts and reduces the injection
time. Therefore, the results reported herein demonstrate the
potential of the concept investigated and suggested topics for
future work include investigating the following:

– The influences of the SLM process parameters on the
MZI in hybrid manufacturing.

– Mechanical and thermal fatigue in parts manufactured by
the hybrid process.

– The precision of the CAE simulation for bifurcated con-
formal cooling design.
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Abstract

The injection molding process is very sensitive to ordinary environmental

alterations, as the numerical simulation is limited to within one injection

cycle, and it cannot predict transient regimes. The present study presents a

new approach based on SARIMAX models developed to predict the tempera-

ture and pressure inside the mold cavity. The proposed approach was devel-

oped in Python language, and it can identify the behavior of the process,

allowing preventive actions. Experimental data of temperature and pressure

obtained in real-time inside an injection mold were accessed to use and to vali-

date the proposed model. The results showed its efficiency and its high accu-

racy for predicting variations in temperature and pressure inside the mold,

even when using a small number of samples to be trained. The proposed

model can be very useful for monitoring the production of mechanical parts,

under an Industry 4.0 environment. For future works, the model enables a

contribution toward digital twins of a molded part, considering all the alter-

ation on the parts' properties due to the disturbance on the injection molding

process. Furthermore, it lays the groundwork for a new injection machine

control system architecture.

KEYWORD S

injection molding, modeling, monitoring, pressure and temperature

1 | INTRODUCTION

Today, the injection molding process is the most used
method for manufacturing plastic parts in large scale and
has grown rapidly in the past three decades, replacing
metal parts with plastic ones in different industrial sec-
tors such as the automotive, electronic, and medical.[1]

The process mainly comprises the following stages: fill-
ing, packing, holding, and cooling. After the filling stage,
the cavity pressure shows a rapid growth (packing stage)
and a switchover changes the process control from a
flow-based control to a pressure-based control. In the
holding stage, more material is injected until the

injection point (the gate) freezes to compensate the ther-
mal contraction.

The quality of the molded part, in terms of geometric
accuracy, sink marks, and mechanical properties are
strongly influenced by the parameters set along the
injection cycle such as the molten polymer temperature,
reciprocating screw advance velocity, and holding pres-
sure. These parameters are defined by the user, but
the properties of the molded part are also affected by the
mold geometry and by transfer phenomena within the
cavity mold.

The process dynamics together with the complex
cavity geometries make injection molding a sensitive
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process, and any simple alteration can affect the quality
of the manufactured parts. According to Sadeghi,[2] vari-
ance in melt flow index (MFR) is one of the major causes
of variation in part properties. Among the different
sources of disturbances, Yang and Gao[3] attribute the
main effects to: temperature sensitive characteristics in
polymer, hydraulic oil, and machine components; and
nonlinearities in servo valves behavior.

Today, numerical simulations by computer-aided
engineering software (CAE) are the most used tool to
simulate this injection molding process. The investigation
presented by Marin et al.[4] demonstrated that current
CAE software can achieve high accuracy for predicting
temperature and pressure inside mold cavities during
injection processes (98% and 97%, respectively), but it
takes into account the process dynamics only within one
injection cycle. Thus, transient regimes due to thermal
perturbations or variations in the polymer properties can-
not be predicted by CAE approaches.

Therefore, the present study addresses this issue and
presents a statistical model to forecast injection cycles
ahead of a batch production of plastic parts. By using a
SARIMAX framework the cavity temperature and pres-
sure profiles were modeled as mixed autoregressive mov-
ing average processes. The proposed model is able to
forecast the variations that usually occur cycle-to-cycle in
an injection molding batch, which the CAE cannot pre-
dict. The method was validated to profiles obtained from
a real process and to profiles with simulated determinis-
tic disturbances. The fulfillment of real time require-
ments show that it is possible to employ this method on
simple open-loop control approaches. Furthermore, the
method lays the groundwork for a new closed-loop con-
trol for the injection molding process.

2 | LITERATURE REVIEW

To support the development of this study, a literature
review on the injection molding process and forecasting
was carried out and is presented below.

2.1 | Injection molding variables and
data acquisition

The process data can be classified by means of process
variables and machine variables. The process variables
refer to the data that occur inside the mold cavity during
an injection cycle. The pressure-volume-temperature
(PVT) data and the flow velocities are the main process
variables. Hydraulic pressures, clamping forces, and
reciprocating screw strokes or velocities are known as

machine variables. Some studies have been conducted to
improve the process variables measurements because
these variables more adequately represent the injection
process and the quality of the molded products.[5,6] This
is due to the dependence of the mass and heat transfer
during injection molding in relation to the cavity
geometry.

Some results of the molded part, such as weight, mor-
phology, sink marks, and shrinkage and warpage are
largely defined by the cavity pressure. This correlation
between the cavity pressure and the part quality makes
the cavity pressure a major issue in the monitoring and
control of the process.[7]

The cavity pressure is relevant, especially, in the fill-
ing and packing-holding stages. After the gate is frozen, a
stage with constant volume begins. This isochoric stage is
important for the dimensional accuracy of the molding.
The setting of the cavity temperature, at the end point of
the holding stage, can be used to adjust the cooling time
to produce parts with optimum qualities.[8]

Chen and Gao[9] studied the influence of the packing-
holding pressure profile on the part quality. They con-
cluded that the part weight is a non-monotone function
of the packing-holding pressure. Phenomenon like part
warpage or part shrinkage are profile dependent.

Nam et al.[10] used cavity pressure and temperature
signals to model the form error in injection molded
lenses through a response surface methodology (RSM).
The comparison with experimental results showed that
PVT data inside mold cavity can be used to predict the
quality of the injected parts. Wang and Mao[11] show that
the PVT data can also be used in the injection mold pro-
cess control. Marin et al.[12] showed that the form error
in molded plastic parts is strongly influenced by the tem-
perature inside the mold's cavity, and it can also cause
voids inside the plastic parts.

Considering this background, the monitoring of the
process inside the mold's cavity is justified. Although con-
trol approaches by means of machine variables have
shown good results, they guarantee only the cycle-to-
cycle reproducibility of machine variables. Since the qual-
ity of the injected parts are dependent on mold geometry,
the control and monitoring of process variables are a
major issue for the injection molding process.

2.2 | Modeling approaches for injection
molding processes

Currently, three main modeling approaches of the trans-
fer phenomena within injection molding processes can
be found in the literature. These approaches comprise
analytical and numerical solutions to differential partial

2 PABST ET AL.

 15482634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pen.26166 by C

A
PE

S, W
iley O

nline L
ibrary on [26/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



equations based on processes with physical or empirical
models based on process data.

Analytical models can be obtained by solving mass,
momentum, and energy conservative equations whose
initial and boundary values represent the process condi-
tions. Solutions to steady state incompressible flows can
be found in works by Bretas and D'�avila,[13] while pulsa-
tile incompressible flows were investigated by Daprà and
Scarpi.[14] The temperature evolution on a slab of poly-
mer within the mold cavity is the subject of a study by
Pignon et al.[15] However, this procedure is limited to
very restricted conditions in simple geometries, and it
can represent only dynamic behaviors within the stages
of the injection cycle.

Usually, CAE software simulates the injection mold-
ing process by employing the Hele–Shaw model, which is
based in a simplification of the conservation equation of
momentum considering the flow laminar, incompressible
and invariant along the part width. Solutions to this
model can be approximated on a mesh of polygonal
domains through the finite elements method.[16] How-
ever, it is a time varying process and the part's properties
can suffer unpredictable alterations along a production
batch.[3] Since these disturbances can be stochastic, the
CAE simulation cannot take them into account. Thus, it
is limited to simulate the process dynamic within one
injection cycle, neglecting seasonal disturbances.

Empirical models are able to address these seasonal
disturbances. Unlike analytical models and CAE simula-
tions, empirical models do not require total knowledge of
the mold cavity's geometry. It requires data from the pro-
cess, obtained by transducers or from the machine's CLP.
The knowledge of material parameters is not needed as
well, since the model parameters can be estimated by sta-
tistical procedures.

Table 1 provides an overview of these different model-
ing approaches to modeling the injection molding pro-
cesses and its particularities. Each method has specific
properties, considering the geometry, parameters, and
dynamics.

Depending on the purpose, one method may be more
suitable than another to represent the process.

Considering the complex geometry and the seasonal dis-
turbances usually faced in injection molding processes, as
well as the intention to develop a model for a future
closed looping control, the present study focuses on
empirical models.

2.3 | Empirical modeling for injection
molding process

To contextualize the state-of-art of modeling for the injec-
tion molding process, a chronological background is pre-
sented below.

One of the first models to forecast the injection mold-
ing process was presented by Haber and Kamal.[17] The
authors used the Box and Jenkins method to model the
peak values of the cavity pressure in an injection molding
process. The model was able to identify a second order
autoregressive behavior on the peak pressure time series.
However, the modeling did not comprise the entire cavity
pressure profile.

Contemporarily, Kamal et al.[5] developed a determin-
istic model of the cavity pressure dynamics during the
filling stage of an injection molding cycle. In order to
generate data to fit the model parameters, the authors
performed steps on the servovalve, which controls the
reciprocating screw stroke. The model consisted of a first
order plus delay response superimposed to a constantly
increasing pressure. The model is represented by the
Equation 1:

p tð Þ¼K1tþK2 1� e
t�D
τ

� �
, ð1Þ

where p tð Þ is the cavity pressure, K1 and K2 are constant
parameters, D is a time delay, and τ is a constant of time.
The delay was attributed to the distance between the
gate and the location of the pressure transducer. This
work represented a step forward, but again, the model
cannot forecast the entire profile of the pressure during
a molding cycle, which limits the forecasting of the
process.

TABLE 1 Comparison between modeling approaches

Analytical models CAE simulations Empirical models

Geometry Simple geometric shapes (cylindrical
pipes and parallel planes)

Complex geometries approximated by
polygonal meshes

Geometry is not necessary. Data
obtained by sensor along the
process

Parameters Diffusivity parameters and
thermodynamic state

Diffusivity parameters and
thermodynamic state

Parameters estimated through process
data

Dynamics Within stage behaviors Within cycle behaviors Within cycle and seasonal behaviors

PABST ET AL. 3
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Kamal et al.[5] also tried to fit a stochastic model by
performing steps on the servovalve according to a pseu-
dorandom binary sequence (PRBS). The Box and Jenkins
method was used to obtain a transfer function relating
the servovalve opening to the cavity pressure. However,
the stochastic model had not successfully represented the
differenced pressure time series. The authors attributed
this to excessive noise in the measurements.

Zhao and Gao[18] developed a model to obtain a pro-
file correlating the nozzle temperature to the reciprocat-
ing screw stroke. In this profile, the initial and final
temperature (and its extreme values as well) and their
respective strokes were selected. These points were used
as an artificial neural network (ANN),[19] while the injec-
tion stroke and another process settings were used as the
inputs. The ANN was trained with 25 sets of experimen-
tal data through 10,000 epochs reaching a global error
goal of 0.1%. After this, the temperature profile was
reconstructed using a piece-spline method based on the
ANN outputs. Although the good accuracy shown in
the results, this model does not comprise the dynamics of
the process, since the nozzle temperature is related to the
reciprocating screw stroke instead of its previous values
or time derivatives.

Sadeghi[2] developed an off-line planning process uti-
lizing an artificial neural network (ANN) and the results
of CAE simulation of the molding process using a high-
density polyethylene (HDPE). The results were used to
train an ANN capable of predicting short shot and weld
line defects. The ANN was trained with the results of
2000 simulations through 660 epochs using a backpropa-
gation algorithm. The occurrence of short shot and weld
line defect phenomenon could be predicted by the ANN
for process parameters settings absent in the simulations.
This demonstrated a good generalization capacity of the
ANN. It is possible to point out that the approach pro-
posed by Sadeghi[2] required much less computational
time than the approach by Zhao and Gao.[18] This
happened due to the size of the data set used to train the
model, implying that a huge data set is needed when
the time to fit the model plays a critical role. But again,
the procedure did not take into account the process
dynamics.

Following the development sequence, Zhao et al.[20]

used an ANN to forecast the cavity pressure. For this
aim, an ultrasonic transducer generated pulsed ultra-
sounds inside the cavity and received the reflected
response at the cavity interface. To indicate the material
density inside the cavity, a reflection coefficient was cal-
culated through the ratio between the incident and the
reflected ultrasounds amplitudes. Thus, the reflection
coefficient, the cavity temperature, and the hydraulic
pressure were used as inputs of an ANN. The cavity

pressure (measured with a Kistler 6190A sensor) was
used as the output. The forecasts provided by the ANN
presented good agreement with the experimental data
(the maximum error was less than 0.6 MPa). This work
represented a great advancement in this field, but it is a
static model. Thus, it is limited to being implemented in
a forecast or in a control approach. ANN require an
amount of training data, which may not be conveniently
identified in real time process.[2] SARIMAX models can
be an important alternative to predict time series with
periodic behavior, as in the case of injection molding.[21]

Another ultrasonic method to measure the cavity
pressure was proposed by Zhang et al.[22] The method is
based on the tensile elongation of the machine's tie bar
due to the cavity pressure and clamping force. According
to sonoelasticity theory, the stress on the tie bar is pro-
portional to the time interval required for a pulsed ultra-
sound to be reflected at the tie bar ends. To calibrate this
method, the cavity pressure was measured with a Kistler
6157B sensor. Despite of the good agreement with experi-
mental data (4.3% of relative error), this method requires
the use of appropriate clamping force profiles to produce
accurate forecasts.

The literature review showed that there is a lack of
modeling approaches to cavity temperature and pressure
in injection molding processes, considering these vari-
ables dynamics. In order to obtain an efficient forecasting
for monitoring and controlling the process, it is necessary
to generate a model of the process dynamics that com-
prises cycle-to-cycle variations.

The present work introduces a new real-time statisti-
cal approach to predict the variable profile during a batch
of production of molding parts. Temperature and cavity
pressure were considered as the process variables. The
proposed model can provide reasonable one-cycle predic-
tion for process behavior. This can be useful to monitor
the characteristics of the next molding part to be pro-
duced. Furthermore, the methodology can also be used to
actively actuate into the process to prevent failures in the
next parts.

3 | MODELING FRAMEWORK

SARIMAX models were used to model the process vari-
ables. SARIMAX models are statistical methods used to
identify processes such as time series. They do this by
adjusting the coefficients, and can be used to understand
the behavior of the time series and forecast future values.
This kind of model is a generalization of the mixed auto-
regressive moving average (ARMA) processes. ARMA
models cannot identify nonstationary behaviors in the
time series, while SARIMAX does this by differentiating

4 PABST ET AL.
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the signals.[21] Due to the seasonality in cavity pressure
and temperature, SARIMAX was evaluated in this study.

SARIMAX models can represent more parsimoni-
ously the injection molding process. This is because these
models can frame periodic behaviors through differenti-
ating the signals. The differentiated signals, in turn, can
be identified as a mixed linear autoregressive moving
average process, since the cycle-to-cycle deviations are
small.

After performing preliminary tests with the models, it
was observed that using the cavity temperature and the
cavity pressure as covariables resulted in a significant
reduction of the mean squared error for the forecasts of
the process variables. Therefore, SARIMAX models were
implemented by including the covariables as exogenous
variables.

The basis used to develop the model proposed in the
work involves the following methods: ARMA, ARIMA, SAR-
IMA, and SARIMAX. A description of each method and its
correlation with the developed model is presented ahead.

3.1 | ARMA and ARIMA models

Prior to a deeper description on the proposed SARIMAX
modeling for the injection molding process, some nota-
tion and general concepts should be posed. Let be a con-
tinuous experimental data y(t), properly sampled with a
sample time Ts, resulting in a discrete-time data
y1 y2 � � � yk …½ � where yi denotes the ith sample value
of such data. Define the time-delay operator z�l as

z�lyt ≜ yt�l , ð2Þ

that is, yt�l is the sample data l steps behind the sample
yt . Additionally, consider the functions

ϕp ≜ϕ z�1, p
� �¼ 1�a1z

�1�a2z
�2�…�apz

�p

θq ≜ θ z�1, q
� �¼ 1�b1z

�1�b2z
�2�…�bqz

�q ð3Þ

as discrete polynomials in time-delay operator.
The AutoRegressive AR model of order p refers to the

data description of the variable in terms of its past values,
that is,

yt ¼ a1yt�1þa2yt�2þ…þapyt�pþϵt )ϕpyt ¼ ϵt, ð4Þ

where ϵt is the modeling error, which includes noise and
non-modeled dynamics.

The Moving Average MA model of order q takes into
account the stochastic contributions in the formation of
the present value of the modeled variable. By assuming ϵt
a white noise, whose ϵt and ϵt�l are uncorrelated for any
t≠ 0 and l�ℤ, the MA model is given by

yt ¼ b0ϵtþb1ϵt�1þb2ϵt�2þ…þbqϵt�q ) yt ¼ θqϵt : ð5Þ

The ARMA model of order p, qð Þ is obtained by consider-
ing the two contributions above, that is, ϕpyt ¼ θqϵt .

A stochastic process is referred as nonstationary if its
statistic characteristics, measured by the sample average
and variance, are not constant along the time. A known
result on regressive modeling is that an ARMA model is
not suitable to describe nonstationary data.[21] When
the data presents a nonstationary character, it is nec-
essary to include an additional Integrated term, of
order d, into the model. This term consists in differen-
tiating the experimental data by d steps, so that the
processed data results in a stationary condition. For
instance, the operation 1� z�1ð Þyt ¼ yt� yt�1 produces a
data which two consecutive values are subtracted them-
selves. Then, this can be extended to a general order of
differentiating d, resulting in the ARIMA model of
order p, d, qð Þ:

ϕp 1� z�1
� �d

yt ¼ θqϵt : ð6Þ

3.2 | SARIMA and SARIMAX models

A Seasonal AutoRegressive Integrated Moving Average—
SARIMA—model is the one that blends the ARIMA
model features and the previous knowledge about sea-
sonality in the data profile. If the data presents a season
period s, one can obtain a SARIMA model by using the
general formulation[21]:

ϕpz
�sΦP 1� z�1

� �d
1� z�sð ÞDyt ¼ θ0þθqz

�sΘQϵt , ð7Þ

where ϕp, ΦP, θq and ΘQ are functions with their own
parameters and order and θ0 is a constant parameter.
When this parameter is zero, the model can only describe
stochastic processes. Otherwise, deterministic behaviors
can be represented. The model can be expressed by the
compact format SARIMA p, d, qð Þ� P,D,Qð Þs, in which
P,D,Qð Þs represents, respectively, the regressive, inte-
grated and moving average orders for the seasonality
description, while p, d, qð Þ are the orders of the ARIMA
contribution.

PABST ET AL. 5
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Notice that all the models discussed until this point
explains the experimental data by a regression of past
values of such variable, its season character and moving
average aspects. However, some process variables can be
correlated to another, what implies that a richer model
is only achieved if this additional variable is also
included into the model. For example, it is expected
that the temperature profile exerts influence over the
cavity pressure variable and vice-versa. Hence, this
called exogenous variable can be introduced into the
SARIMA model, resulting in the Seasonal AutoRegres-
sive Integrated Moving Average with eXogenous
inputs—SARIMAX—models.

From the mathematical point of view, a SARIMAX
model can be described as follows. Let yt be the process
variable to be explained, and xt another process variable.
Consider the function

γr � γ z�1, r
� �¼ 1þ c1z

�1þ c2z
�2þ…þ crz

�r : ð8Þ

Then, a SARIMAX p, d, qð Þ� P,D,Qð Þs model for the vari-
able yt that takes into account the effects of the exoge-
nous input xt is written as

ϕpz
�sΦP 1� z�1

� �d
1� z�sð ÞDyt ¼ θ0þθqz

�sΘQϵtþ γrxt :

ð9Þ

One of the main features of the SARIMAX models is
their ability to forecast future experimental values of a
dynamic process. This is useful not only for control pur-
pose, but also for process quality assurance.

For one-cycle ahead forecasting, it might be consid-
ered that all data were measured until the time t, and the
model should provide forecasting for the variable values
between the time interval tþ1 and tþ s, where s repre-
sents the season periodicity. These forecast values are
denoted herein as bytþ1:tþs. However, to obtain such values
in a SARIMAX framework, some information should be
available at the forecast moment t:

• Previous values for the process variable y0:t and exoge-
nous input x0:t, which is not a problem, since the
experimental data is acquired in real-time;

• Forecast values for the exogenous input bxtþ1:tþs.

By assuming that the exogenous input has also a sea-
sonal profile, a strategy should be applied to obtain
bxtþ1:tþs prior the estimation of a one-cycle ahead (bytþ1:tþs)
through the SARIMAX model. This paper proposes a
methodology to obtain such input forecast in Section 4.3.

4 | EXPERIMENTAL PROCEDURE

The developed model was tested in a real injection mold-
ing process. The validations were conducted in two situa-
tions: (i) changing the process filling time (three values)
and (ii) under deterministic disturbances that can occur
during any batch of parts manufactured by injection
molding process.

Based on SARIMAX approach, an empirical model
was developed using Python language and the process
variables, that is, cavity temperature and pressure.
Thereby, the proposed system predicts the process vari-
ables' behavior in seasonal intervals based on tempera-
ture and pressure samples obtained in real-time by
transducers installed inside the mold cavity, such as ther-
mocouples and piezoelectric sensors, respectively.

The model was designed in two stages. First, one
should obtain a SARIMAX structure for the process. This
model structure is based on the parameters p, q, r and P,
Q, R of the SARIMAX model, and the seasonal time
s (Equation 9). This structure is often related to the pro-
cess operational conditions, such as filling time and part
to mold. One way to obtain the model structure is per-
forming a previous test with a variety of conditions for
the parameters p, q, r and P, Q, R. The chosen structure
is the one that minimizes some design metrics. Once the
model structure is defined, the second stage consists in
obtaining the model coefficients of the polynomials ϕp,
ΦP, θq, and ΘQ. Therefore, it means that for each mold
(product) and process parameters, a new model and its
parameters might be developed. Both design stages are
presented in the current work.

The experimental procedure is divided into: (i) work-
piece, mold, data acquisition and validation of the proposed
model; (ii) preliminary data processing; (iii) design of the
SARIMAX model and its parameters; (iv) results and discus-
sions, as detailed in the following sections.

4.1 | Workpiece, mold, data acquisition,
and validation of the proposed model

For this work, a product containing free-form shape was
designed as a representative workpiece (Figure 1A) as
well as its corresponding injection mold (Figure 1B). Sen-
sors of temperature and pressure were installed inside
the mold's cavity (Figure 1C,D, respectively). The K-type
thermocouples and a Kistler 6190CA piezoelectric sensor
were used to measure the cavity temperature and pres-
sure. A Kistler 5139A221 charge amplifier, connected to
an Agilent 34970 data acquisition device, was utilized to
read the voltage signal.

6 PABST ET AL.
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After manufacturing the mold, the sensors were
installed (Figure 1E) and a number of batches of the
workpiece (Figure 1F) were carried out using a polypro-
pylene (PP) H105. The plastic workpiece was 140 mm in
diameter with 2 mm thickness and was injected into the
mold cavity by means of a direct injection system of cold
runner type. For this, a HAITIAN SA1200/410 injection
mold machine with screw diameter of 40 mm, with an
injection volume of 214 cm3 and clamp force of 1200 kNs
was used.

The injection channel had conical geometry, with
extremity diameters of 6.5 (close to the part) and 4.0 mm,
with a total measure of 82 mm. The mold also had a cool-
ing system with two U shaped channels of 8 mm in diam-
eter located at 18 mm from the mold surface. Figure 1C
shows the thermocouples at 10 mm from the cavity

surface, and Figure 1D shows the pressure sensor was
installed at 22 mm from the injection point.

4.1.1 | Validation of the model

First, to certify the efficiency of the model the filling time
process parameter was chosen among three values: 0.5,
1, and 2 s. The pressure and temperature of all cases were
assessed during the injection molding process, in real
time, to feed the model. The second validation was con-
ducted by using the pressure and temperature data with
deterministic disturbances along the molding production
(for the process with 1 s of filling time).

Figure 2 presents the real profiles of the temperature
and pressure obtained by the sensors, for the process with

FIGURE 1 Main basis for the

experimental procedure
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1 s of filling time. These data were feed the model to fore-
cast the future cycles. The points from A to F in
Figure 2B delimit the transitions between the injection
molding stages. Although the process begins before
point A, the molten polymer reaches the pressure sensor
location only at this instant. So, the filling stage is com-
prised between point A and point B, when a switchover
from flow-based to pressure-based control occurs.

In Figure 2B, it is possible to see a local minimum
between the points B and C. This happens when the
switchover occurs before completing the filling of the
mold cavity. As a consequence, the compression of
the material in the mold cavity starts later under
packing-holding pressure. This condition may affect the
part quality by inducing deficient weight and poor
mechanical characteristics.[23] In the processes addressed
in this work, these local minima were observed for the
filling times of 1.0 and 2.0 s, and not for 0.5 s, as
presented ahead on the results (Figure 8B). After that,
cavity pressure exhibits rapid growth until reaching point
C. According to Wang,[8] during the holding stage a
pressure variable is maintained at a predetermined profile
while more material is packed into the cavity to compensate
thermal shrinkage. Usually, this pressure variable is a
machine variable. At point D, the gate freezes, marking the
end of the holding stage.

The details about the modeling approaches developed
to identify such time series process variables are pre-
sented ahead.

4.2 | Preliminary data processing

Because the SARIMAX models require linearity and sta-
tionarity for the respective data profile, and the profiles

for the cavity pressure and temperature are nonstationary
ones,[24] the first step of the proposed approach comprises
the preprocessing the variables (temperature and pres-
sure) collected in real time during the batch production.
Then the prior data processing comprises three steps:

(i) Outliers removal: basically, an outlier is defined as
a data sample that is considerably discrepant from the
expected data profile. This can occur because of some
measurement problem at the moment of such point
acquisition. There are some methods to detect and treat
outliers within experimental data.[21] In this paper, a sta-
tistic approach is applied, as follows. A data sample from
the variable process is assumed to be an outlier if its
value is outside the range limited by four standard devia-
tions around the data mean. This is an effective method
for outlier detection through a statistic z-score test. Once
a sample is identified as an outlier, this point is replaced
by the mean between the previous and the next samples
around it;

(ii) Nonstationary component removal: the nonstation-
ary component is removed by taking a differentiated ver-
sion of the experimental data. By considering the cavity
pressure p(t) for instance, the autoregressive model is
obtained from the differentiated data rδpt given by

rδpt ≜ pt�pt�δ, 8t , ð10Þ

where δ corresponds to the differentiating step delay.
Obviously, the strategy can be repeated for another step
delay λ:

rλrδpt ¼rλpt�rλpt�δ, 8t : ð11Þ

The number of differentiating iterations and the
respective step delays should be chosen so that the

FIGURE 2 Cavity temperature and pressure within an injection cycle: (A) cavity temperature; and (B) cavity pressure

8 PABST ET AL.
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stationary condition is achieved. For the injection mold-
ing process, a natural choice for the step delay is the sea-
son period s, since this is the main contribution for the
data nonstationarity. However, a second differentiating
iteration can be applied in the case the previous pro-
cessed data remains nonstationary. The autocorrelation
function can be used to test the stationarity of an experi-
mental data (or its differentiated version). For a station-
ary signal, the autocorrelation function results in a
nonnegative even function. Then, the occurrence of sig-
nificant negative values for the autocorrelation function
implies in nonstationarity,[25] and;

(iii) Reduction of an eventual nonlinear character: this
is important because the nonlinearity, indeed degrading
the data stationarity, also affects the efficacy of the SARI-
MAX model, once this model is essentially linear. In the
present study, the chosen method was the one-parameter
Box–Cox transformation, which the data to be modeled
pass by a logarithmic function.[26] For the case of the cav-
ity pressure data, such transformation is relevant, due to
its nonlinear profile and its wide value range along the
molding process.

4.3 | Design of the SARIMAX model and
its parameters

Since the injection molding process can exhibit seasonal
order behaviors, as the process variables can also present
a nonstationary character, the use of SARIMAX models
appears as an attractive option to describe the system. Once
the experimental data from the cavity pressure and the tem-
perature were properly preprocessed (Section 4.2), dynamic
forecasts of the cavity pressure and temperature were
performed.

The statsmodels module, in Python language, allows
the dynamic forecasting, also known as n-step ahead pre-
diction. It produces an arbitrary number of predictions by
updating the time series with obtained forecasts. The
SARIMAX one-cycle ahead forecast depends on future
(and not available) values for the process variables. An
alternative to circumvent such problem is to model the
forecasts within the time t + 1:t + s � 1 for each process
variable through a SARIMA model, since this provides
the variable future values from the own past values for
the same variable. These values can then be used with
the SARIMAX estimation.

By considering the previous remarks, the proposed
SARIMAX s-step ahead forecast methodology can be
elaborated according to the following steps:

• Step 1: collect the experimental data from the variables
until the present time t;

• Step 2: obtain the s-step ahead forecast through SAR-
IMA modeling for the process variables. This aims to
provide the forecast of the future values bptþ1:tþs andbTtþ1:tþs to be used in the next step;

• Step 3: obtain the s-step forecast the SARIMAX model-
ing for the variable process. This is the main step, once
the one-cycle ahead prediction takes into account the
expected correlation between the process variables;

• Step 4: wait until the next experimental data is avail-
able. Then, return to step 1. The procedure can be
illustrated by Figure 3.

To verify the forecast performance, standard error
measures were used. The mean squared error (MSE), the
mean absolute deviation (MAD), and the mean absolute
percentage error (MAPE) metrics are defined by:

MSE¼ 1
T

XT

t¼1
xt�bxtð Þ2,

MAD¼ 1
T

XT

t¼1
xt�bxtj j,

MAPE¼ 1
T

XT

t¼1

xt�bxtj j
xt

,

where bxt is the time series forecast in instant t. While
MAPE is a measurement, in percent, of prediction accu-
racy, MAD and MSE are measures of the average magni-
tude of the forecast errors. However, the latter imposes a
greater penalty on a larger error than a significant
amount of small errors. Thus, while the MSE measure-
ment enables the visualization of the error peak magni-
tude, the MAD measurement enables the understanding
of the entire forecasting error distribution.

FIGURE 3 SARIMAX framework for the injection process

modeling

PABST ET AL. 9
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4.3.1 | Correlation analysis in one injection
molding cycle

The process variables present correlated behaviors,
since they influence each other. To investigate the gen-
eral aspects concerning the cross-correlation between
the process variables, temperature and pressure signals
were plotted in a scatter plot, as shown in Figure 4.
There are three different regimes along one injection
cycle to cite:

• Regime 1: filling and late cooling. In this regime, the
points present a huge dispersion, becoming impossible
to obtain a linear correlation;

• Regime 2: transition. The region inside the rectan-
gle comprises the early packing and early cooling
stages. Once again, a linear correlation is not
observed;

• Regime 3: packing-holding. The last regime occurs
during the late packing and holding stages, and it pre-
sents a linear correlation between cavity pressure and
temperature. In Figure 4, the sample data oscillates
around the straight line, obtained through the least
squares method. The reduction in sample data dis-
persion can be assigned to the mechanical behavior
of the molten polymer during packing-holding
stages. According to Zheng et al.[24] the pressure is a
dynamical variable related to the momentum conser-
vation in the flow in incompressible fluids. In com-
pressible fluids it corresponds to the thermodynamic
pressure, related to the fluid temperature by an
equation of state. This information helps to compre-
hend the correlation between the process variables
and justify their use as covariables during the model-
ing of the injection molding.

4.3.2 | Evaluation of stochastic and
deterministic disturbances

Under ideal conditions, cavity pressure and temperature
should present only periodic components. However, it is
not rare to occur cycle-to-cycle deviance in the process
variables. This can be expressed as mixed autoregressive
moving average processes.[21] An efficient SARIMAX
model should be able to express as the steady-state condi-
tion as the transient and deviance present into the data.

In order to validate the approach proposed in this
work, time series of the process variables, exhibiting sig-
nificant deterministic transient behaviors, were taken.
The Nelder–Mead method was used to identify the pro-
cess dynamics at each injection cycle. Data samples of
five previous cycles were used to forecast the next cycle.
Besides the MSE, MAD and MAPE measures, the time
required to fit the models was also evaluated.

5 | RESULTS, VALIDATIONS, AND
DISCUSSIONS

This section comprises the results of the modeling of the pro-
cess and the validation of the developed model. Using the
real signals of pressure and temperature obtained during sev-
eral cycles of injection molding to produce the plastic work-
piece. The model was evaluated in terms of accuracy. The
signals of the first injection cycles were used to fit the model.
Later, the signal ahead obtained from the injection process
were used to check the accuracy of the forecasted values.

The specific results presented in this section are:
(i) preliminary data processing, (ii) design of the SARI-
MAX model and its parameters; (iii) validation of the
model, first under deterministic disturbance that might
occurs along a production batch and second by applying
different molding conditions (different filling time) for
the same product.

5.1 | Preliminary data processing

Prior to the modeling task, the experimental data were
preprocessed by using the procedure presented in
Section 4.2. Indeed important to become possible the
SARIMAX modeling, such processing provides valuable
information about the injection molding process.

After the stage of outlier removing, the process vari-
ables dynamics were evaluated through sample autocor-
relation function, as presented in Figure 5. Two facts are
remarkable. First, one can observe the periodic aspect
due to the data seasonality. The second positive peak,
occurring at the lag 96, corresponds to the season period

FIGURE 4 Correlation between cavity pressure and

temperature
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to be further used. Moreover, both data present an obvi-
ous nonstationary, and possibly a nonlinear, aspect to be
removed prior the modeling stage.

With the information provided above, the time series
were first submitted to a seasonal order differentiation (lag
s¼ 96). The autocorrelation functions can be seen in
Figure 6. It is possible to notice that the differentiated tem-
perature time series presents nonnegative autocorrelation,
which implies a stationary aspect. However, the pressure
time series still presents negative peaks in the autocorrela-
tion plot, even though a seasonal differentiation was applied.
This can be explained by a nonlinear aspect in the
pressure data.

To circumvent the nonlinearities, the Box–Cox transfor-
mation was applied to the data. The results are presented in
Figure 7. As expected, the transformation does not consider-
ably impact the temperature data, since this variable
already shows an eminent stationary character. However, it
resulted in a mostly nonnegative autocorrelation function
for the pressure variable (Figure 7B). After this action, the
pressured data also presents a stationary aspect, being possi-
ble the SARIMAX modeling— a linear methodology.

5.2 | Design of the SARIMAX model and
its parameters

In this work, the processed time series of the variables
were identified through 108 models obtained by varying
the order of the linear operators. The best candidates
were chosen by their ability in providing the smallest
standard error measures (MSE, MAD and MAPE, for the
temperature and MSE and MAD for the pressure) while
fitting the model parameters.

The methodology presented in Section 4.3 was
applied to obtain the SARIMAX model for the process
variables. The next subsections are presented and dis-
cussed: (i) the model and its parameters obtained for
forecasting the cavity pressure, (ii) the model and its
parameters obtained for forecasting the temperature,
(iii) the forecasting results using two different optimiza-
tion algorithms, the BFGS (Broyden–Fletcher–Goldfarb–
Shanno) and the Nelder–Mead algorithm.

i. The model and its parameters obtained for forecasting
the cavity pressure.
The most suitable parameters are those that result in
the minimum values of standard error measures. It
happened for SARIMAX (0, 0, 1) � (2, 1, 1)96. Thus,
this is the model adopted Equation (12):

1�Φ1z
�96�Φ2z

�192
� �r96pt

¼ θ0þθ1Ttþ 1�θz�1
� �

1�Θz�96
� �

εt,
ð12Þ

where the parameters for the model are: Φ1 ¼ 0:2869,
Φ2 ¼ 0:3103, θ0 ¼�0:0119, θ1 ¼ 0:0852, θ¼ 0:3185,
and Θ¼�1:0002.

ii. The model and its parameters obtained for forecasting
the cavity temperature.
Although not necessary from the stationarity point of
view, the Box–Cox transformation was also applied
to the temperature data. This is because the models
presented a slightly better data fitting after such
transformation. The minimum error occurred for the
SARIMAX(2, 0, 1) � (2, 1, 1)96. Thus, this is the
model adopted:

FIGURE 5 Autocorrelation plots for the temperature (A) and cavity pressure (B)

PABST ET AL. 11
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1�ϕ1z
�1�ϕ2z

�2
� �

1�Φ1z
�96�Φ2z

�192
� �r96Tt

¼ θ0þθ1ptþ 1�θz�1
� �

1�Θz�96
� �

εt,
ð13Þ

where the parameters for the model are: ϕ1 ¼ 0:8106,
ϕ2 ¼�0:0023, Φ1 ¼�0:2189, Φ2 ¼ 0:6046, θ0 ¼
2:596�10�5, θ1 ¼ 0:0064, θ¼�0:2748, and
Φ¼ 0:4288.

iii. The optimization algorithms. There are two possible
algorithms to solve the models (Equations 12 and 13),
the BFGS and the Nelder–Mead algorithms. In order to
evaluate the accuracy and the computational burden of
both algorithms, the models for forecasting the pres-
sure and temperature were run and compared with the
real data obtained during the injection molding pro-
cess. From the computational burden point of view, the

BFGS optimization required 1179 and 901 s to fit the
temperature and pressure models, respectively,
whereas the Nelder-Mead took only 10 and 3 s to fit
the temperature and pressure models, respectively.
Such high time spent to fit the chosen models through
the BFGS method represents an issue during the pro-
cess operation. Therefore, as it is faster, the Nelder–
Mead optimization method is a suitable alternative for
this application. This is the method used in this work
from now on.

5.3 | Validation of the model

The validation of the proposed model is presented first
using different molding conditions by changing the filling
time. Second, it was evaluated using a molding process
under a deterministic disturbance condition.

FIGURE 6 Seasonal order differentiation. Differenced temperature (A) and differenced pressure (B) autocorrelation functions. The gray

lines represents the confidence levels for the autocorrelation test. The textual information presents the main plot findings

FIGURE 7 Box–Cox transformation. Differenced temperature (A) and differenced pressure (B) autocorrelation functions. The gray lines

represents the confidence levels for the autocorrelation test. The textual information presents the main plot findings
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5.3.1 | Validation under different molding
conditions

In this validation, the forecast model SARIMAX (0, 0,
1) � (2, 1, 1) was tested using three different values of

the filling time: 0.5, 1, and 2 s. Figure 8 presents the
results of the forecast temperature and pressure for these
three molding conditions and their respective real values
to show the accuracy of the model. These plots show two
injection molding cycles.

FIGURE 8 Forecasting of the temperature and pressure. (A) Temperature filling time of 0.5 s; (B) pressure filling time of 0.5 s;

(C) temperature filling time of 1.0 s; (D) pressure filling time of 1.0 s; (E) temperature filling time of 2.0 s; and (F) pressure filling time of 2.0 s

PABST ET AL. 13
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Figure 8 shows that the SARIMAX model developed
in this work has a very accurate behavior when altering
the molding condition by the filling time. The model was
designed with a focus on predicting one cycle ahead.
However, the second cycle was also forecasted with very
high accuracy. The error of the forecasted temperature
was very low and can be neglected, and the pressure
error was at most 7% for forecasting the first cycle ahead.

5.3.2 | Validation under deterministic
disturbances

Using the process parameters with the filling time of 1 s,
some deterministic disturbances were induced along a
production batch of the plastic part, in order to evaluate
the capability of the model to predict transient regimes
along a batch production. In an industry, such transient
regimes can happen due to undesirable changes in the
process parameters (e. g., nozzle temperature and pres-
sure, reciprocating screw velocity, material, humidity).

Figure 9 shows the real temperature and pressure in
transient regimes, and the forecasted values obtained
from the model. The parameters of the SARIMAX models
were estimated using data sampled in five previous cycles
to forecast the subsequent ones. These disturbances are
incorporated into the process variables' autoregressive
dynamics in SARIMAX models, requiring the identification
of the process during its operation. SARIMAX (2, 0, 1) �
(2, 1, 1)96 and SARIMA (0, 0, 1) � (2, 1, 1)96 models of the
endogenous and exogenous variables, respectively, were
fitted and used to make predictions in each injection cycle.

Whereas transient regimes in cavity temperature
comprise the occurrence of a trend in the time series, like
it is shown in Figure 9A, this does not happen in cavity

pressure time series. This signal exhibits discontinuities
between the ejection of one part and the beginning of the
next injection cycle. Thereby, the transient behaviors are
associated with the variance in the pressure peaks. Then,
the proposed model shows the capability of forecasting
the molding process under transient regimes, either or
not linear trends, with high accuracy. The error on the
temperature can be neglected because it is very small,
and the maximum error on the pressure was about 8%
(but it happened on the third cycle ahead).

The computational burden of the model was signifi-
cantly low in both validations (under different molding
conditions and under deterministic disturbances).
Depends on the volume of data, the processing time took
between 3 and 12 s, considerably lower than the entire
molding cycle (17.6 s).

6 | CONCLUSIONS

This work presents a new statistical model developed to
predict the cavity pressure and temperature during any
injection molding cycle, throughout a given production
batch. The validation of the new model was conducted
during a real injection molding process. An injection
mold was instrumented with sensors of temperature and
pressure, inside its cavities. On the experimental valida-
tion the model was trained with data from five injection
cycles and the results demonstrated that even using a
small number of samples to be trained, the model
showed high forecast accuracy. Besides, the validation
was also conducted in two different process conditions:
first by altering the molding conditions, by the filling
time parameter and second by checking the forecasting
in a process under deterministic disturbance.

FIGURE 9 Forecasting under deterministic disturbances. (A) Temperature and (B) pressure
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The results shown that the forecast error of tempera-
ture was very low, and it can be neglected, and the pres-
sure error was at most 8%. Considering the processing
time of the model, at the longer case it took lower than
12 s (it is lower than the entire molding cycle: 17.6 s).
Therefore, from the accuracy of the forecasting and com-
puting burden point of view, the proposed model showed
to be very efficient.

For the investigated case, the optimization methods
Nelder–Mead and BFGS (Broyden–Fletcher–Goldfarb–
Shanno) provided very accurate results. However, the
Nelder–Mead was significantly faster than the BFGS.

To achieve the proposed model, different implemen-
tations and proposals were evaluated. This investigation
brings an important scientific contribution about the
methods for forecasting molding processes. Considering
the complexity of these processes, this investigation
showed that the use of seasonal autoregressive operators
and the Box–Cox transformations of the process variables
can improve the accuracy of the modeling. There is a cor-
relation between cavity pressure and temperature, justify-
ing the use of both of them as covariables. In this
manner, the models can forecast the process variables
during transient regimes caused by deterministic distur-
bances, and the forecasts of the exogenous variables can
be used on SARIMAX models.

The results demonstrate the potential of the proposed
model for managing and monitoring the production of
the molding process, under an Industry 4.0 environment.
On future works, the model allows the generation of digi-
tal twins of the molded parts, considering all the alter-
ations on the parts' properties due to the disturbances
that may occur in a batch production during injection
molding process. Furthermore, the model lays an impor-
tant groundwork for a new injection machine control sys-
tem, either open or closed loop architecture.
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